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INTRODUCTION

Korovkin’s well-known theorem asserts that the set of the three functions
dr)=1,i=0,1,2, is a test set for the convergence to identity of sequences
(L,),cn of positive linear operators on %(a, b), endowed with the
supremum norm. There is no need to make a special hypothesis on the
norms of the operators since the property lim,_, ., |L,||. =1 is a conse-
quence of the convergence of L,¢, to ¢;.

On the contrary, the uniform boundedness of a sequence of positive
linear operators L, is required in order to have {¢,,i=0, 1,2} as a test set
for the convergence to identity of L, on L?(a, b), 1 <p<oc0. It is not a
consequence of the convergence for the functions ¢,, i=0, 1, 2 (cf. Exam-
ple 2), and it is necessary according to the uniform boundedness theorem.

The contracting case, on L”(a, b), was solved by H.Berens and
R. A. DeVore [1]. They showed that the functions ¢, and ¢, form a test set
for the convergence to identity of positive linear contractions on L*(a, b)
(simultaneously with other authors), and they gave estimates of the order
of approximation.

In the first part a Korovkin-type property is studied for the self-adjoint
operators on L”(a, b): these verify, for fand g in L?(a, b):

b b
[ Lrx) g0 ax = f(x) Le(x) dx.

The integral operators with symmetrical kernel, convolution operators
with positive, even functions, for example, are of this type.

We show that a sequence of self-adjoint positive linear operators
converges to identity on L?(a, b), p =1, if and only if it converges for ¢,
and ¢, and the operators are uniformly bounded. Quantitative results in
terms of the first modulus of smoothness and the orders of approximation
for the functions ¢, and ¢, are given.
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In the general case, for operators which are not necessarly self-adjoint,
{#o, #,} is no longer a test set. On L?(—1, 1), let L be defined by

172 .
Lf(t)=J:l/2f(x+ Ndx, if |1]<t

and
Lf(y=f(r), if [t]>3

The constant sequence L, = L preserves ¢, and ¢, and, of course, does
not converge on L?(—1,1), p= L

In the second part, we give estimates of the order of approximation by
a sequence of positive, linear, uniformly bounded, operators L, in terms of
the orders of approximation for ¢, ¢, ¢,, and the first modulus of
smoothness of f; so we verify that {@,, ¢,,4,} is a test set for the
convergence to identity of such positive operators (cf. M. W. Muller [8]).

I. SELF-ADIOINT OPERATORS

Let (L,),cn
adjoint. Let

be a sequence of positive linear operators that are self-
j'rl,p,i=sup ” Ln¢j_¢j” LP(a, b)» l=0; ls 2
isi

THEOREM 1. 1<p<oo. For every fe W"?(a, b) space of absolutely
continuous functions such as f' € L?(a, b), we have

NLn F =N < Ap(Anp ol LU+ DS ND)+2700 1)
with a,=1/2 if p<2and a,=1/p if p>2.

THEOREM 1'. 1<p<oo. If, moreover, the sequence L, is uniformly
bounded on L¥(a, b), for every fe L?(a, b), we have

“ Lnf—f ”pSBp('{n,p,O ” f |Il+wp(f; ln,p,0+'1:fl,l))’

w,(f, t) being the first modulus of smoothness of f defined by
i/p
ayfi=sup (] 1 7xu) s ax)
luf<t u

where 1,={x|x€(a,b),x+uc(a,b)}, A, and B, being constants inde-
pendent of f and n.
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Note. In the above theorems the equality holds for the constants.
Examples in part III will be given in order to show that, in some sense,
these estimates are the best possible.

If ||L,40ll 1s bounded in n, we have 4, ,,< Cte AYE o, so the order of
approximation in Theorem 1" is w,(f, 4,7, ;).

We show first that the general problem can be reduced to this case. We
introduce, for ne N, the set E, = {x|x€(a, b), | L,do(x)—o(x)| =1} and
E? is the complementary set of E, in (g, b).

LemMa 1.1. 1< p< 0. For every fe W"P(a, b), we have

e (Ln =D <3U SN+ B =a) L f111) A pos
where 1, is the indicator function of the set X.

Proof. Let u(E,) be the Lebesgue measure of E,. We have
ME) <[ 1L,800) = go(x))” dx < Lybo—dols =0

On the other hand, for every feW'?(q,b), the inequality
Iflle<(=a)"" I f1li+ 1]l holds; it is a consequence of | f(x)|<
| F() + 1 £ ||1, for every (x, t) e (a, b)*. Then, we write

gL, f=Dlp < flleo (11g,Ludoll, + 1 1,90ll,)
SIS e (1 Ln@o—@oll, +2 1 1g,00ll,)
<30l f -

To study [[1g¢(L, f—f)l,, we introduce the function J(u, x) defined on
(a, b)* by

Ju, x)=1 if u<x and J(u, x)=0 if u>x.

We write for every fe W"?(a, b) and (x, t) e (a, b)*:

|7 =0 = [ 1) ) = T, 1) d.

Then, we introduce a positive real number A4, to be chosen later, in order
to part the above interval of integration. We set L!(f(?), x) instead of
L, f(x), to indicate that ¢ is the variable for f and we get results about

1 ge(x) Lo(f () —f(2), ),

in the following lemmas.
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LemMa 1.2. If fe WYP(a, b), we have

Proof. For every (x, t) € (a, b)?, we use Hélder inequality to get

L ) L ([ 00 Lt )l )

<41,

P

J;xf'(u) 1{"||X*u| <h}(u) du

b
<(2h)”'1J Lf P 5=y <y (w) At

and we take L, of the integral of the left-hand side, considered as a
function of ¢, at the point x.

As L, is positive and L,¢d,(x) <2 if xe E;, the quantity to bound is less
than

1/p

b pb
200 (7170007 ey i

LEMMA 1.3. If fe W' P(a, b), the quantities

p

(b—a)*~* if p>2

jf F(w) du

and
p

h*=? if p<2

J,xf’(“) Loz w > my(u) du

are bounded by
b
[ 1117 (= 00w, x) = I, 1) du

Proof. With the help of Holder inequality we get

x 14 x
it p>2: jf'(u)du <|x—t|(b—a)"2 j | f/()]* du
and
X x P
i <2 || S70) Ly )
t

<x_~tzwp p—1 g ? d
|5 1w ).
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Then we write

[T1r @ 1x =1l du

=L" | £(@)|? (x = (I, x)— J(u, 1)) du.
LemMa 14. If fe W"P(a, b), we have
[z (fb | /@)1 (x— 0, X)— T, 1)) d, x) dx
<44, L F17.

Proof. We expand the quantity that is under the integral sign and we
take L, of this function of ¢. Then we use the linearity and the self adjoint-
ness of L,:

fb L (jb | 1)1 (x = (I, X)— I(w, 1)) s, x> dx
=2 jb | £/ )7 jb J(u, x) L' (x — £, x) dx du

SV RS
<2105 (I Ludo— ol + I Loy — &1 1l1)-
LemMMA 1.5. If fe W"P(a, b), we have
I11gs(x) Lo(f ) =S (1), 0, S Cp I 1 237115
with a,=1/2 if p<2 and a,=1/p if p>2.

Proof. If p>2 and xe ES, we use Holder inequality for the positive
linear operators and Lemma 1.3:

| Lo(f(x)=f(1), x)I” < (b—a)? =2 (L,do(x))" "

x L' (fb | £/@)|? (x — t)(J(u, x) — J(u, 1)) du, x)-

Then, with the help of Lemma 1.4, we write

I ge(x) Ly(f(x)=f(8), ) E< 22 B —a)? 2 | f1115 A
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If p <2, the same argument is used to write

Then we use Lemma 1.2 to get

11 5:x) LLSGO) —£(0), )1,
<R | SN, +2" R 2 | £, e

L) Lo 7060 e aiom 90 i )

S2UHVPRIRR | 1, AR L

P

and we choose h=41)/7 .

Proof of Theorem 1. For xe ES we write the equality
L, f(x)=f(x) = L(f(1) =f(x), x) + f(x)(L,do(x) — o(x))
and we get the inequality
NLnf=f o <U1g Ly f=S W+ 111 gs(x) L(f(2) —f(x), X,
+ 1w 1 Lafo—oll,-

Then Lemmas 1.1 and 1.5 give us:

WL, f=f 1, <4l S 11+ G=a)" 111D Anpot Co L1, 2520 1

Proof of Theorem1'. Now we suppose that the sequence (L,) is
uniformly bounded on L?(a, b) and we set M =sup, ||L,|,.
We use the Peetre # -functional defined for fe L?(a, b) and t e (a, b) by

K, (1, 1) inf (| f—gll,+t1 g1,
wlP(a,b)

g€

It verifies (¢, /) < Cte w,(f, t) and the constant depends only on (g, b).
Let fe L?(a, b) and ge W'?(a, b). We have

IL,f=fl, <M+ f—gl,+IL.,g—gl,
We use Theorem 1 to bound || L, g~—g|, and we get

WL, f=fl,<(M+1+4,4,,0b—a) "W g—fl,+Aknpoll fl
+((b—a) " P A h, 0+ 4,00 M &,

This inequality is true for every ge W'?(a, b), so we have

1L f=S 1, SCte(Ayp0 I f 11+ HplAnpo+ 470115.1))-
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Remark. H.Berens and R.A.DeVore in [1] gave the following
estimate for a sequence (L,) of positive linear constractions and
feL’(a,b),

IL, f=f 1, <CQALE N, + @, ,(f AY2)),

where w, ,(f) is the second modulus of smoothness.

The moduli of smoothness of orders one and two are related:
o, ,(f, ?)< Cte w, ,(f; t) (cf. H. Johnen [5] or G. G. Lorentz [6]).
And for some functions as log 7, 1* (—1 <a <0), we have

O1fi 1) ~ @31 1).

Hence, for sequences of self-adjoint positive linear contractions, the
estimate of Theorem 1’ is better for p > 2. Moreover, 4, ,, is, in general, of
the same order as A% | (Example 5).

II. GENERAL POSITIVE LINEAR OPERATORS

Let (L,)
I<p<oo.

be a sequence of positive linear operators on L”(a, b),

nelN

THEOREM 2. For every fe W'?(a, b), we have
WLy f=f 1, < Aol £+ 1L 1)+ AL 1 £1,)

with B,=1/3 if p<3 and B,=1/p if p=3.

THEOREM 2'. If, moreover, the sequence (L,) is uniformly bounded on
L?(a, b), we have for every fe L?(a, b):

Lo f =1y < Bolhmpio I £ 1y + @,(f Ao+ 22, 5)).

We use the same methods as in the proof of Theorems 1 and 1’ with the
help of Lemma 1.1 and the following lemma.

LemMma 2.1. If fe W'?(a, b), we have
1L ge(x) Li(f () = £ (1), XM, S Cod8 2 1 f

with B,=1/p if p=3 and ,=1/3 if p<3.



KOROVKIN PROPERTIES IN L?(a, b) 345

Proof. With the help of Hélder inequality for the integrals, we write for
fe WhP(a, b) and (x,t)€ (a, b)*:
| f)—fOP<If 151 x—t>(b—a)"=> if p>3
and
P

U,Xf’(u) Uiuatix— wp >y (1) du

3-p
[x—t|P~' if p<3.

<Is15

x—1
h

Now, we use Holder inequality for the linear positive operator L,. The
quantities

(b—a)3"’LcILf,(f(t)—f(X),X)l”dx if p>3

and

14
dx if p<3

JE:,

are bounded by || f'||2 || 1z Lol %" §5 Lif(x — )%, x) dx.
Furthermore, we have

L4 (] 700 Vo om0 i )

Jb L'((x—1)* x)dx

= [ (AL Bol) = o)) = 2L 15) — () + L Balo) — ) di
<44,

So, the result is proven if p > 3.
In the case p <3, we use Lemma 1.2 to bound

11 (%) L) = £(0), ), S 4R L 1], + B ¥220 P28 S 1L f

We choose #=23 | and the result follows.

II1. EXAMPLES

In the following examples, we construct, first, operators for which it is
impossible to improve the estimates of Theorems 1, 1’, 2, and 2'. The other
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examples are the Landau operator and some operators of Bernstein type;
the estimates are also pretty good for them.

ExampPLE 1. On L?(—1,1), p=1, we define the sequence of positive
linear operators L,,:

jas2msm+an) [ Jwd i x> m

L,f(x)=—"—
—1 ‘

" (1/2)f f(u) du if |x]<l/n.

lu| > 1/n

These operators are uniformly bounded on L?(—1,1), p21,
1
L,éo= o, Anta~An12~"s IL,$,— ¢, ||p~n71/p~j'rll{’;,l'
n

On the spaces L?(—1,1), p=>2 (respectively p=3), the order of
approximation given by Theorems ! and 1’ (respectively 2 and 2') is
achieved for the function ¢,.

ExaMpPLE 2. On L?(—1,1), p=1, we define

(e[ fwde it (xi<im

L,f(x)=
f(x) if |x|>1/n,

where (a,) is a sequence of positive real numbers. The operator L, is linear
positive, self-adjoint and

, an_l
“Ln||p=sup(an’ 1)5 ||Ln¢0_¢0“p~W’

a a
||Ln¢1—¢1||1~n_;, ||Ln¢2—¢2||l~n_;'

(a) For a,=1, the sequence L, preserves the constants. The orders of
approximation given by Theorems 1 and 1’ are achieved if p <2, for the
function f(¢)=|t| ~"*. Indeed w,(f, 1) ~,_ "7~ "* and we verify that

1L, f=f1,2Clen'*~P~aw,(f 4, ),

since L, f(x)=(4/3)n'%, if | x| < 1/n, and
1/3%n 4 P 1/p 2 1/p
1L, f=f =27 (J <x_1/4—§n1/4) dx) 2(_) nl/,

0 3%n
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(b) For a,=n"4, q>0, the sequence L, converges for ¢, in L?(—1, 1),
p<gq, and for ¢, and ¢, in L!(—1, 1). So it does converge on W'?(—1,1)
if p<q (Theorems 1 or 2), but it does not converge on L'(—1, 1) since it
is not uniformly bounded on L'(—1, 1).

Exampie 3. On LP(—1,1), p=>1, we set

(n/2)j|u'<l/nf(x+u)du if |xl<1/n
L,.f(x)=
f(x) if |x|>1/n

We have Ln¢0 = ¢09 Ln¢1 = ¢1’ and ” Ln “p < 2’ An,l,2 = 2/3’13'

For this sequence L,, the orders of approximation given in Theorems 2
and 2’ are achieved, if p <3, for the function f(¢f)=|¢|~"* Indeed, we
verify that

NLof—f 1, Cte =17 ~ gy (£, 2173 ),

2 1 3/4 1 3/4 1
Lo =3 ((7+%) +(——x) ) it |xl<e,
3 \\»n n n
and

G (B () ) ) o)

2 \Wr
>(5)

Examples 1 and 3 are adapted from examples of [1, 2].

since

ExaMPLE 4. The sequence of Bernstein-type operators studied in {3] is
defined on L'(0, 1) by

Lf@) =0+ 1) % pulx) [ pule) () d
k=

=0
where p,.(x)= (n!/kW(n—k)!) x*(1 —x)"~*
We have L,¢,=¢o, | L., — &I, ~ 1/n. In the case p<2, we get from
Theorem 1’ the inequality:

HL,,f~f|\p<Ctewp(f,ﬁ>, Yfe LP(0, 1).
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It is also true if fis continuous on [0, 1] and p = co. By interpolation this
inequality also holds if p> 2.

ExampLE 5. Here, we study an example of Korovkin operators defined
by even functions: Landau operators. They are defined on L'(0, 1) by

Lf@)=p," | (1=G=xP) [0 d,  where p,=] (1—r)d

They are contractions on L?(0, 1), 1 < p < oo, they converge uniformly to
identity on [4,1—68], 0<d <4, but not on [0,1]. They converge on
L?(0,1), p=1 (cf. R.G.Mamedov [7] or B. Wood [9]). We get an
estimate of the order of approximation that cannot be improved if p > 2.
We verify that

| L,do—dolly~ | Loy — Py lly ~n~ ">

Indeed we have

[ 1 Latox) = o) dx=p; | (Jf (—wydut| (1-w)y du) dx

1
0 — 1—x

2! fol jl (1—u?) dudx=[p,(n+1)]""

and

_I(n+1)1(1)2) fz
P =T+ 32) nSen

Since || L, ., <1, at once we get 4, , o< Cte 1,4 ;. On the other hand

1 1 14 tp
mpoz o ([ ([ -y au) ax)
pnfd [ o1 x 4 ip
1 2\ . _ 2\

=p, (L <'[0 (1 —u*)" du JO (1—u?) du) dx)
1/,

SOk

4\ 4

Hence A, ,o~n"'/7.
Now, we write, for every xe (0, 1):
L,¢(x)—¢i(x)
=[2(n+1)p, ) ' [ =x*)"* ' = (1= (1=x)*)"*"]
+ X(L,@o(x) — Po(x)).
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It follows that
1
1Lt =115~ ([ 1 Ludolo) = a1 d )

SIL.¢o—¢olf

and
1 1 14
>p;pj x”U (1—u2)"du> dx
0 1—-~x
1 1 P
Bp,,“”f x"(f (I—uz)"du) dx~p,.
L — pnsa P4
SO Ay py~n"1.

The estimate of Theorem 1’ is, if fe L?(a, b),

1L, f=f1,<B,(n™ | [, + @, (fin~ V) if p<2,
SB,(n™V | fl,+o,(fin~ ) if p22.

The equality holds in the case p>2 for f=¢,.
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